НЕФТЬ-ГАЗ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

Теперь на нашем сайте можно за 5 минут создать свежий реферат или доклад

Скачать книгу целиком можно на сайте: www.nglib.ru.

<< Высшая математика <<

Виноградов И.М. Элементы высшей математики

Скачать книгу здесь
Автор: Виноградов И.М.
Название: Элементы высшей математики
Год издания: 1999
УДК: 51
Число страниц: 512
Содержание книги:
Предисловие
§ 1.Ось
§ 2. Вектор
§ 3. Направленные углы
§ 4. Проекция вектора с оси на ось
§ 5. Векторные цепи
§ 6. Цепи углов
§ 7. Проекции вектора на две взаимно перпендикулярные оси
§ 8. Угол между двумя векторами. Условия параллельности и перпендикулярности
§ 9. Упражнения и контрольные вопросы
§ 1. Метод координат
§ 3. Упражнения
§ 1. Переменные и постоянные
§ 2. Понятие о функциональной зависимости
§ 3. Классификация математических функций
§ 4. Обзор и графическое изображение простейших функций одного аргумента
§ 5. Обратные функции
§ 6. Понятие об уравнении линии
§ 7. Упражнения
§ 2. Общее уравнение прямой
§ 3. Частные случаи
§ 5. Простроение прямой
§ 6. Определение угла между двумя прямыми
§ 7. Условие совпадения прямых
§ 8. Пересечение прямых
§ 9. Расстояние от точки до прямой
§ 10. Другой подход к выводу уравнения прямой
§ 11. Прямая, проходящая через две точки
§ 12. Уравнение прямой в отрезках на осях
§ 13. Задачи на прямую линию
§ 1. Окружность
§ 3. Построение эллипса по точкам
§ 4. Уравнение эллипса
§ 5. Связь эллипса с окружностью
§ 6. Директрисы эллипса
§ 7. Гипербола. Построение посредством нити
§ 8. Построение гиперболы по точкам
§ 9. Уравнение гиперболы
§ 10. Асимптоты. Геометрическое значение b
§ 11. Директрисы гиперболы
§ 12. Парабола. Построение по точкам
§ 13. Уравнение параболы
§ 14. Преобразование координат
§ 15. Пример на упрощение уравнения кривой путем параллельного переноса осей
§ 16. Поворот осей
§ 17. Общий случай
§ 19. Спираль Архимеда
§ 20. Логарифмическая спираль
§ 23. Уравнение лемнискаты
§ 24. Параметрическое задание линий
§ 25. Построение графика
§ 26. Циклоида
§ 1. Оси, векторы, углы
§ 2. Проекции
Длина вектора через проекции
§ 4. Простейшие зависимости, содержащие величину вектора, проекции и направляющие косинусы
§ S. Проекция вектора на оси. Косинус угла между двумя векторами. Скалярное произведение векторов
§ 6. Координаты
§ 7. Выражение проекций вектора через координаты конца и начала
Расстояние между двумя точками
§ 9. Деление отрезка в данном отношении
§ 10. График уравнения с двумя переменными
§ 11. Поверхность как след, образуемый перемещением некоторой деформируемой плоской кривой
§ 12. Цилиндрические поверхности
§ 15. Общее уравнение плоскости
§ 16. Частные случаи
§ 17. Выяснение расположения плоскости относительно осей
Условие перпендикулярности
§ 19. Условие совпадения плоскостей
§ 20. Расстояние от точки до плоскости
§ 21. Прямая как пересечение двух плоскостей
§ 22. Прямая, проходящая через данную точку
§ 23. Прямая, проходящая через две точки
§ 24. Переход от системы уравнений прямой в общем виде к системе в виде пропорций
Условие перпендикулярности
§ 26. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности
§ 27. Простейшие поверхности. Эллипсоид
§ 28. Другие простейшие поверхности
§ 29. Кривая в пространстве как пересечение двух поверхностей
§ 30. Параметрические уравнения
§ 31. Винтовая линия
§ 32. Параметрические уравнения в механике
§ 33. Переход от параметрического представления к общему и обратно
§ 34. Преобразование координат
§ 1. Бесконечно малые
§ 2. Понятие предела переменной величины
§ 3. Понятие бесконечно большой
§ 4. Свойства бесконечно малых
§ 5. Основные свойства пределов
§ 6. Предел непрерывной функции
§ 7. Геометрическое истолкование непрерывности
§ 8. Свойство непрерывной функции
§ 10. Особые случаи разыскания предела
§ 11. Замечательный тригонометрический предел
§ 12. Признак существования гфедела
§ 13. Сходимость бесконечных рядов
§ 14. Простейшие признаки сходимости
§ 15. Основание натуральных логарифмов
§ 16. Порядок бесконечно малых
§ 17. Упражнения
§ 2. Производная как предел
§ 3. Пояснение общей теории на примере. Уравнения касательной и нормали
§ 4. Механическое значение производной
§ 5. Производные трех простейших функций
§ 6. Производная постоянного и суммы. Вынесение постоянного множителя за знак производной
§ 7. Производная сложной функции
Производные функции х" при любом п и функции 0х .231 § 9. Производные произведения и частного. Производные igx и ctgx
§ 11. Сводка основных формул
§ 12. Дифференциал
^ § 13. Основные формулы для дифференциалов
§ 14. Высшие производные
V § 15. Высшие дифференциалы
§ 16. Дифференцирование неявных функций
§ 17. Дифференцирование функций, заданных параметрическим способом
§ 18. Преобразование дифференциалов к новой переменной 252 § 19. Упражнения
§ 1. Непрерывность первой производной
§ 2. Возрастание и убывание функций. Максимум и минимум
§ 3. Приложение к построению графиков
§ 4. Наибольшее и наименьшее значения функции
§ 5. Прикладные задачи на наибольшее и наименьшее значения
§ 6. Направление выпуклости, точки перегиба
§ 7. Приложение к построению графиков
§ 8. Построение графиков разрывных функций
§ 9. Признак максимума и минимума, основанный на исследовании знака первой производной
§ 10. Признак максимума и минимума, основанный на исследовании знака второй и высших производных
§ 11. Асимптоты
§ 12. Дифференциал дуги
§ 13. Направляющие косинусы касательной
§ 14. Радиус кривизны, центр кривизны
§ 15. Дифференциал дуги и направляющие косинусы касательной для кривой в пространстве
§ 16. Упражнения
Непрерывность
§ 3. Частные производные и полный дифференциал сложной функции многих переменных
J § 4. Дифференцирование неявных функций
§ 5. Частные производные и полные дифференциалы высшего порядка
§ 6. Упражнения
§ 1. Основные понятия и теоремы
§ 2. Общий наибольший делитель
§ 3. Общее наименьшее кратное
§ 4. Простые числа
Вопросы к главе 1
Численные примеры к главе 1
§ 1. Функции М
§ 2. Мультипликативные функции
§ 3. Число делителей и сумма делителей
§ 4. Функция Мёбиуса
§ 5. Функция Эйлера
Вопросы к главе 2
Численные примеры к главе 2
§ 1. Основные понятия
§ 3. Дальнейшие свойства сравнений
§ 4. Полная система вычетов
§ 5. Приведенная система вычетов
§ 6. Теоремы Эйлера и Ферма
Вопросы к главе 3
Численные примеры к главе 3
§ 1. Основные понятия
§ 2. Сравнения первой степени
§ 3. Система сравнений первой степени
Вопросы к главе 4
Численные примеры к главе 4
§ 1. Общие теоремы
§ 2. Символ Лежандра
§ 3. Символ Якоби
§ 4. Случай составного модуля
Вопросы к главе 5
Численные примеры к главе 5
§ 1. Общие теоремы
Ч § 2. Первообразные корни по модулям ]f и 2р
§ 3. Разыскание первообразных корней по модулям р" и 2
§ 4. Индексы по модулям ра и 2р
§ 5. Следствия предыдущей теории
§ 6. Индексы по модулю
§ 7. Индексы по любому составному модулю
Вопросы к главе 6
Численные примеры к главе 6
§ 1. Определения
§ 2. Важнейшие свойства характеров
Вопросы к главе 7
Численные примеры к главе 7
Решения вопросов
Решения Решения Решения Решения Решения Решения Решения главе 1
главе 2
главе 3
главе 4
главе 5
главе 6
главе 7
Ответы к главе 1
Ответы к главе 2
Ответы к главе 3
Ответы к главе 4
Ответы к главе 6
Ответы к главе 7
Таблицы ввдексов
Таблица простых чисел <4070 и их наименьших первообразных корней
Глоссарий:
2 4 а б в г д е ж з и к л м н о п р с т у ф х ц ч ь э
Смотреть страницы:
1 2 53 103 153 203 253 303 353 403 453 503 511 512
Полнотекстовый поиск по книге:
Введите слово или фразу для поиска:
Близкие по содержанию книги:
Аналитическая геометрия
Математика >> Геометрия
Краткий курс высшей математики
Математика >> Анализ, высшая математика >> Высшая математика
Высшая математика в упражнениях и задачах. Ч.1
Математика >> Анализ, высшая математика >> Высшая математика

Просмотреть оригинальные страницы книг в формате djvu можно на сайте: www.nglib.ru.


Главный редактор проекта: Мавлютов Р.Р.
oglib@mail.ru