НЕФТЬ-ГАЗ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

Теперь на нашем сайте можно за 5 минут создать свежий реферат или доклад

Скачать книгу целиком можно на сайте: www.nglib.ru.

<< Задачники <<

Фаддеев Д.К. Сборник задач по высшей алгебре

Скачать книгу здесь
Автор: Фаддеев Д.К.
Название: Сборник задач по высшей алгебре
Год издания: 1977
УДК: 512.8
Число страниц: 288
Содержание книги:
Предисловие
Глава I. Простейшие сведения из теории чисел
§ 1. Целая часть, дробная часть, расстояние до ближайшего целого
§ 2. Наибольший общий делитель
§ 3. Каноническое разложение на простые множители
§ 4. Теория сравнений
§ 5. Числовые функции
§ 6. Простейшие сведения о кольцах и полях
Глава П. Комплексные числа
§ 3. Уравнения третьей и четвертой степени
§ 4. Корни из единицы
§ 5. Показательная функция н натуральный логарифм
§ 6. Некоторые обобщения
Глава III. Действия над матрицами и определители
§ 1. Действия над матрицами
§ 2, Определители второго и третьего порядков
§ 3. Перестановки
§ 4. Определение н простейшие свойства определителя
§ 5. Вычисление определителей
§ 6. Применение умножения матриц к вычислению определителей
§ 7. Применение умножения матриц, разбитых на клетки, к вычислению определителей
Глава IV. Системы линейных уравнений, матрицы, квадратичные формы
§ 1. Системы линейных уравнений, случай однозначной разрешимости
§ 2. Обратная матрица
§ 3. Ранг матрицы. Линейные системы общего вида
§ 4. Алгебра матриц
§ б. Квадратичные формы и симметрические матрицы
Глава V. Алгебра полиномов
§ 1. Элементарные действия над полиномами. Простые и кратные корни
§ 2. Наибольший общий делитель полиномов
§ 4. Разложение рациональной дроби на простейшие
§ б. Интерполяция
§ 6. Рациональные корни полиномов. Приводимость и неприводимость над полем Q и над полем GF (р
§ 7. Сравнения в кольце полиномов. Алгебраические расширения
§ 8. Симметрические полиномы
§ 9. Результант и дискриминант
Глава VI. Распределение корней поликомов на вещественной оси и на плоскости комплексной переменной
§ 1. Теоретические основы
§ 3. Принцип аргумента и его следствия
Глава VII. Теория групп
§ 1. Аксиомы полугруппы и группы, простейшие свойства, примеры
§ 2. Подгруппа, нормальный делитель, факторгруппа, гомоморфизм
§ 3. Свободная группа и свободное произведение
§ 4. Инвариантные полиномы. Применения к исследованию уравнений низших степеней
Глава VIII. Линейная алгебра
§ 1. Базис, размерность, подпространства
§ 2. Линейные отображения и операторы. Образ, ядро, полуобратный оператор
§ 3. Теоретические основы приведения матрицы оператора к каноническому виду
§ 4. Собственные значения и собственные векторы, инвариантные подпространства, каноническая форма
Указания
Глава I
Глава II
Глава III
Глава IV
Глава V
Глава VI
Глава VII
Глава VIII
Ответы и решения
Глава I
Глава II
Глава III
Глава IV
Глава V
Глава VI
Глава VII
Глава VIII
Глоссарий:
2 4 а б в г д е ж з и к л м н о п р с т у ф х ц ч ш э я
Смотреть страницы:
1 2 31 59 87 115 143 171 199 227 255 283 287 288
Полнотекстовый поиск по книге:
Введите слово или фразу для поиска:
Близкие по содержанию книги:
Сборник задач по линейной алгебре
Математика >> Алгебра
Сборник задач по линейной алгебре
Математика >> Задачники
Линейная алгебра и некоторые ее приложения
Математика >> Алгебра

Просмотреть оригинальные страницы книг в формате djvu можно на сайте: www.nglib.ru.


Главный редактор проекта: Мавлютов Р.Р.
oglib@mail.ru